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1. INTRODUCTION

Let  be an unbounded open subset of , . We study nonnegative solutions of the problem

(1.1)

, (1.2)

where  is the gradient operator,  and  are nonnegative functions,  is a real num-
ber, and the coefficients of the highest derivatives satisfy the condition

for all , , and . Assume also that

(1.3)

for all  and , where  is a locally bounded measurable function and
 and  are continuous functions.

A function  is said to be a nonnegative solution of problem (1.1), (1.2) if  and
relations (1.1), (1.2) hold in the classical sense (see [1]). In the case of , condition (1.2) is assumed
to hold.

For every  and a real number  we define

.

We are interested in conditions guaranteeing the triviality of any nonnegative solution of problem (1.1),
(1.2) which are also known as blow-up conditions. Similar issues for nonlinearities of the Emden–Fowler
type were considered in [2–14]. The case of general nonlinearity for equations and inequalities that do not
involve lower order derivatives was studied in [15–20]. For inequalities with general nonlinearity and
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lower order derivatives, sufficient blow-up conditions were obtained in [21, 22]. However, the dependence
of coefficients of the differential operator on the function u was not taken into account in [21, 22]. More-
over, additional requirements were imposed in [22] on the growth of coefficients of lower order derivatives.
Thus, results of these works cannot be applied to certain inequalities, specifically, to those presented in
Examples 2.1–2.3 (see below).

2. MAIN RESULTS
Theorem 2.1. Let

,

where  and  are real numbers. Then any nonnegative solution of problem (1.1), (1.2) vanishes iden-
tically.

Example 2.1. Consider the inequality

, (2.1)

where  and  are locally bounded functions satisfying the relations

(2.2)

for all  in a neighborhood of infinity. As before, we assume that , while , , , and  can be arbi-
trary real numbers.

Let  and . Then condition (1.3) holds for a locally bounded measurable function
 such that

(2.3)
i.e.,

for all r in a neighborhood of infinity, where  and  are constants. By Theorem 2.1, if
(2.4)

and
, (2.5)

then any nonnegative solution of inequality (2.1) is identically zero.
Conditions (2.4) and (2.5) are sharp. Specifically, it can be shown that, if (2.4) is not satisfied, then

inequality (2.1) has a positive solution for any locally bounded functions  and
. In turn, if condition (2.5) is not satisfied, then there are locally bounded measurable func-

tions  and  such that relations (2.2) hold and (2.1) has a positive solution.
Example 2.2. Let the locally bounded functions  and  in (2.1) satisfy the

inequalities

for all  from a neighborhood of infinity, where , , , and  are real numbers and
.

In other words, we consider the case of critical exponents  and  in condition (2.5).
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Following the preceding example, let  and . It is easy to see that (1.3) holds for a
locally bounded measurable function  such that

,
where

Thus, by Theorem 2.1, if (2.4) holds and, additionally,
(2.6)

then any nonnegative solution of inequality (2.1) vanishes identically.
As was said above, condition (2.4) is sharp. It can also be shown that (2.6) is sharp for .
Example 2.3. Consider the inequality

, (2.7)

where  while  and  are locally bounded functions satisfying (2.2).
Assume that

,
i.e., we are interested in the case of a critical exponent  in condition (2.4).

Let  and . Then there is a locally bounded measurable function
 such that (1.3) and (2.3) hold. Thus, by Theorem 2.1, for any nonnegative solution of

inequality (2.7) to vanish identically, it is sufficient that (2.5) holds and, additionally,

(2.8)

These conditions are sharp. Indeed, if (2.8) is violated, then, as can be shown, (2.7) has a positive solu-
tion for all locally bounded functions  and . At the same time, if (2.5) does
not hold, then (2.7) has a positive solution for some locally bounded measurable functions 
and  satisfying relations (2.2).

3. PROOF OF THEOREM 2.1

We introduce the following notation. Let  and  denote the open ball and sphere in  of radius 
centered at the point . In the case of , we write  and  instead of  and , respectively.

By default, we assume that  is a nonnegative solution of problem (1.1), (1.2). For every  such
that  let

.

In what follows, let  and  be the real numbers from the conditions of Theorem 2.1. By  we denote
positive constants (possibly different) that can depend only on , , , and .

We need several preliminary results.
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Then

for all .
Proof. We follow the standard arguments (see [1]). The only delicacy is that the nonlinear term in the

differential operator has to be taken into account. However, it can be seen that this obstacle is not essential.
To avoid unfounded assertions, we present a complete proof.

Assume the opposite, namely, let

for some . Define

.

Since  and  is a compact set, there is  such that

. (3.1)

According to the conditions of the lemma, the function  is not positive on ; therefore, ,
whence  or, in other words, . Thus,

.

After changing to the variables  at the point , the last inequality becomes

,

so

for some , which contradicts (3.1).
The lemma is completely proved.
Corollary 3.1. Let  for some . Then

. (3.2)

If, additionally, , then  for all  and  is a monotonically nondecreasing
continuous function on .

Proof. It can be assumed that

;

otherwise formula (3.2) is obvious. Let . By virtue of condition (1.3), we have

.

Therefore, (3.2) follows from Lemma 3.1, where  and
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Furthermore, if  and  for some , then  vanishes on , where
 is a nonempty open bounded set, so we obtain a contradiction to Lemma 3.1.

The monotonicity of  follows straightforwardly from the fact that

. (3.3)

To prove the continuity of , we extend  to the entire space  by setting  for .
According to (1.2), the new function is continuous in ; moreover, (3.3) can be rewritten as

.

Thus, we conclude that  is continuous on the interval .
The proof is complete.
Lemma 3.2. Let  be real numbers and . Then at least one of the following two inequal-

ities holds:

,

Proof. Consider  such that

.

Furthermore, let  be a real number and  be a monotonically nondecreasing
function that vanishes identically on the interval  and equals unity on . Let
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whence we obtain

(3.4)

Let us show that

. (3.5)

Indeed, if (3.5) does not hold, then there is a real number  such that

. (3.6)

Define

.

Taking into account (1.1), (1.3), and (3.4), we have

Moreover, it follows from (3.6) that

.

Thus, by Lemma 3.1,

for all  or, in other words,
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This contradiction proves (3.5).
Note that  and . Thus,
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Thus, at least one of the following two inequalities holds:

,

Passing to the limit as , we complete the proof.

Lemma 3.3. Let  be real numbers such that  and . Then at least
one of the following two inequalities is valid:
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whence, in view of

(3.13)

we have
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Combining this inequality with the obvious estimates

and

, (3.18)

we derive

. (3.19)

Similarly, if i , then, according to (3.11), we have

.

By (3.13) and (3.18), this yields

(3.20)

Assume that

(3.21)

Then, summing (3.19) over all , we obtain inequality (3.16). If (3.21) does not hold, then

Thus, summing (3.20) over all , we arrive at (3.9).
The proof is completed.
Lemma 3.5. Let , , , , and  be real numbers and . Then

for any measurable function  such that  for all , where  is a con-
stant depending only on , , and .

Lemma 3.6. Let , , , , and  be real numbers and . Then

for any measurable function , where  is a constant depending only on , , and .
Lemmas 3.5 and 3.6 were proved in [16, Lemmas 2.3 and 2.6].
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Proof of Theorem 2.1. Assume the opposite, i.e.,  for some real number , and let
, . By Lemmas 3.3 and 3.4, for any nonnegative integer  at least one of the following

three inequalities is valid:

, (3.22)

, (3.23)

. (3.24)

Let , , and  denote the sets of nonnegative integers satisfying (3.22)–(3.24), respectively.

Summing (3.22) over all  yields

.

Combining this with the estimate

which follows from Lemma 3.6, we conclude that

. (3.25)

Summing (3.23) over all  yields

.

At the same time, by Lemma 3.5,

;

therefore,

(3.26)

In an entirely similar manner, (3.24) implies the inequality
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Combining it with (3.25) and (3.26), we have

which contradicts the conditions of the theorem.
The proof is completed.

ACKNOWLEDGMENTS
This work was supported by the Russian Foundation for Basic Research, project no. 11-01-12018-

ofi-m-2011.

REFERENCES
1. E. M. Landis, Second-Order Equations of Elliptic and Parabolic Type (Nauka, Moscow, 1971; Am. Math. Soc.,

Providence, R.I., 1998).
2. I. Astashova, “On power and nonpower asymptotic behavior of positive solutions to Emden–Fowler type

higher-order equations,” Adv. Difference Equations Springer Open J., No. 2013:220 (2013).
3. I. Astashova, “On quasi-periodic solutions to a higher-order Emden–Fowler type differential equation,”

Boundary Value Probl., No. 2014:174 (2014).
4. I. V. Astashova, E. S. Karulina, S. S. Ezhak, M. Yu. Tel’nova, V. A. Nikishkin, and A. V. Filinovskii, Qualitative

Properties of Solutions to Differential Equations and Related Issues of Spectral Analysis (YuNITI-DANA, Moscow,
2012) [in Russian].

5. L. Veron, “Comportement asymptotique des solutions d’equations elliptiques semi-lineaires dans Rn,” Ann.
Math. Pure. Appl. 127, 25–50 (1981).

6. E. I. Galakhov, “Positive solutions of quasilinear elliptic equations,” Math. Notes 78 (2), 185–193 (2005).
7. E. I. Galakhov, “On some partial differential inequalities with gradient terms,” Proc. Steklov Inst. Math. 283,

35–43 (2013).
8. V. A. Kondrat’ev and E. M. Landis, “On qualitative properties of solutions of a nonlinear equation of second

order,” Math. USSR-Sb. 63 (2), 337–350 (1989).
9. V. A. Kondrat’ev and S. L. Eidel’man, “On positive solutions to second-order quasilinear elliptic equations,”

Dokl. Akad. Nauk SSSR 334 (4), 427–428 (1994).
10. M. O. Korpusov, “Blow-up of the solution to a nonlocal equation with gradient nonlinearity,” Vestn. Yuzhno-

Ural. Gos. Univ., Ser. Mat. Model. Program., No. 11, 43–53 (2012).
11. M. O. Korpusov, “Solution blowup for the heat equation with double nonlinearity,” Theor. Math. Phys. 172 (3),

1173–1176 (2012).
12. E. L. Mitidieri and S. I. Pohozaev, “Nonexistence of positive solutions for quasilinear elliptic problems on Rn,”

Proc. Steklov Inst. Math. 227, 186–216 (1999).
13. E. L. Mitidieri and S. I. Pohozaev, “A priori estimates and blow-up of solutions to partial differential equations

and inequalities,” Proc. Steklov Inst. Math. 234, 1–362 (2001).
14. Y. Naito and H. Usami, “Nonexistence results of positive entire solutions for quasilinear elliptic inequalities,”

Can. Math. Bull. 40, 244–253 (1997).
15. J. B. Keller, “On solution of ,” Commun. Pure. Appl. Math. 10 (4), 503–510 (1957).
16. A. A. Kon’kov, “On solutions of nonautonomous ordinary differential equations,” Izv. Math. 65 (2), 285–327

(2001).
17. Y. Naito and H. Usami, “Entire solutions of the inequality ,” Math. Z. 225, 167–175

(1997).
18. R. Osserman, “On the inequality ,” Pacific J. Math. 7 (4), 1641–1647 (1957).
19. R. Filippucci, P. Pucci, and M. Rigoli, “Nonexistence of entire solutions of degenerate elliptic inequalities with

weights,” Arch. Ration. Mech. Anal. 188, 155–179 (2008); Erratum, 188, 181 (2008).
20. M. Ghergu and V. Radulescu, “Existence and nonexistence of entire solutions to the logistic differential equa-

tion,” Abstr. Appl. Anal. 17, 995–1003 (2003).
21. A. A. Kon’kov, “On properties of solutions of quasilinear second-order elliptic inequalities,” Nonlinear Anal.

123–124, 89–114 (2015).
22. R. Filippucci, P. Pucci, and M. Rigoli, “On entire solutions of degenerate elliptic differential inequalities with

nonlinear gradient terms,” J. Math. Anal. Appl. 356, 689–697 (2009).

Translated by I. Ruzanova

∞ ∞ ∞
− / − /α

θ θ σ

⎛ ⎞
⎜ ⎟ + ≥
⎜ ⎟
⎝ ⎠
∫ ∫ ∫

0 0 0

2

1 2 1

( ) ( )

( ( ) ) ( ) ( ) ,
M r M r r

g t t dt h t dt C rp r dr

Δ = ( )u f u

( ) =div( ) ( )A Du Du f u

Δ ≥ ( )u f u



www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.


		2017-04-10T14:14:48+0300
	Preflight Ticket Signature




